Reverse-Engineering
the Supra iBox

Exploitation of a hardened MSP430-based device

)
bisthat ACCUVANT

Who am |

Braden Thomas
* Senior Research Scientist, Accuvant

* Primarily focus: embedded devices, reverse-engineering, exploit
development

* Previously worked at Apple Product Security
* Software background

AY-Lo F!

What is the iBox?

Android app

Opening the device

Firmware extraction: techniques used and tried
Findings

Demo

Why is this interesting?

Devices attempting to to store crypto secrets in
general-purpose microcontrollers

Just because it’s cheap and easy, it’s not

necessarily smart
— iBox s a case study of why

Hack into houses...

— Over Bluetooth!

Supra iBox

Real estate physical key
container

#1 in market, main
competition is SentriLock

iBox iBox BT iBox BT LE

Keys

« eKey: iOS/Android
app

* ActiveKEY

* Cell radio
« Dongle/Keyfob for

Bluetooth/IR

Android App

eKey Android app

Focused on authentication algorithm

Each eKey has a serial number and a “syscode”

— Syscode is an integer corresponding to regional market
(e.g. Atlanta)

Serial number/Syscode are required at first app launch
in an obfuscated blob

eKey Android app

Serial number/syscode are used as credential to speak to
back-end web service

Web service provides authentication “cookies" (binary blobs
of data)

App transmits cookies to the iBox over Bluetooth/IR

Must provide PIN code (associated with serial number/
syscode) to open the lock

Programmed auth flow

* Two authentication modes:
— Programmed and deprogrammed authentication

* Programmed authentication used exclusively in the field
—Send IDENTITY cookie
—Send CONFIGURATION cookie
—Send OBTAIN KEY message
—Send KEYAUTH cookie
—Send DEVICE OPEN message

Programmed auth

e All cookies contain AES MACs so cannot be modified

* eKey also sends “update bytes” which change daily
— Only available from Supra server (AES MAC)

* eKey can generally only open iBox in same syscode

Must access firmware

Attacker doesn’t have a valid serial/syscode

Even if obtained one (social engineering), don’t have
keyholder’s PIN

And doesn’t want to communicate with Supra’s server to
obtain cookies

Opening the Device

Physical access

* iBox:
— Cut off hard plastic shell
—Remove hex screws
— Open key container

* Use legitimate eKey or exploit

* iBox BT: (above, plus)
— Cut off shackle
— Must pop rivets (big pain!)

A

1
L

Shackle
“®
Ke

!SI. %

2
2
D -
2

) o7 3
N
it Eoe

Board photos

] »
] W 83
: Sy Se LLT
[gmes] 4] -

W

iBox BT

iBox:

MSP430F147

TFBS4710 serial IR
transceiver

241L.C256 serial
EEPROM

Internals

iBox BT:
MSP430F248

STMicroelectronics
bluetooth serial module

Atmel EEPROM

Reverse-engineering steps

* Focus on iBox
— Board easier to obtain (no annoying rivets)
— Older software more likely to be insecure

— Keys are the same anyway!

Map-out the test pads

Find debugging interfaces

Perform firmware extraction

Firmware Extraction

MSP430 firmware extraction

* JTAG
— 4-wire and 2-wire
— MSP430F147 only supports 4-wire
— JTAG security fuse is blown, prohibiting JTAG

* BSL

BSL Overview

“Bootstrap loader”

Serial interface

Permits read/write access to flash memory
Implemented with code stored in special flash region

Nearly all acccess is restricted with password
— Interrupt vector table is used: inherently unigue and secret
— Only mass-erase can be performed without password

Existing BSL attacks

* Travis Goodspeed: “Practical Attacks Against the MSP430
BSL” in 2008

— Voltage glitching attack

— BSL password comparison timing attack

Voltage glitching
attack

Used GoodFET22 with ADG1634 + DAC
for glitching during authentication
check

Remove the chip from the board to
avoid interference

Step down power on all lines using
resistors

Only feasible on BSL 1.x to avoid mass-
erase on incorrect password

— MSP430F147 has BSL 1.1

Results of voltage glitching

* Failed to reproduce

* Device continued running undeterred or died altogether

* GoodFET's MSP430 is too slow to glitch another MSP430

— BSL runs at 1Mhz, and GoodFET (MSP430F2618) can be clocked up
to 16Mhz

BSL timing attack

* Password byte comparison has a single clock-cycle timing difference
between the "correct” and "incorrect” paths

* Send each byte ([0x00-0xff] x 32) and measure # of clock cycles to
determine byte makeup of password

ROM:0CDA handle tx passwd: ; CODE XREF: sub_ E10-1B8"j
ROM: OCDA mov.w $OFFEOh, R6 ; IVT address (correct password)
ROM: OCDE mOV.W #20h, R7 ; pw len

ROM:0CE2

ROM:0CE2 check next byte: ; CODE XREF: sub E10-11A j
ROM:0CE2 call #frx_byte

ROM:0CE6 cap.b &received byte, O(R6) ; compare byte by byte
ROM:0CEC jz equal byte

ROM:0CEE bis.b #WILL SEND NAX, &bsl_state ; bad pw bit
ROM:0CF2

ROM:0CF2 equal byte: ; CODE XREF: sub E10-124°j
ROM:0CF2 inc.w R6

ROM:0CF4 dec.w R7

ROM:O0CF6 jnz check_next_byte

BSL 1.10

Timing attack problems

e 1 start bit, 8 data bits, parity bit, 1 stop bit
* Bit-banged

* Between bytes, will wait for start bit to go low when receiving

NVILs VE aln

ROM:0F2E bitcnt_is O: ; CODE XREF: ROM:0F32 j
" ROM:OF2E bit.b #BIT2, &P2IN
L - ROM:0F32 jnz bitcnt _is 0

« If this loop executes > 1 time, you have destroyed all prior timing
information

« Device will check that RX line after stop bit is high, or cause an error

Timing attack problems

. Tinterbyte -
Byte N-1 - Byte N
stop bit - start bit
Device checks Timing info

here destroyed here if not low

Timing attack problems

* |deal Tinterbyte = NUMber of instructions * clock speed

— Clock speed is highly inconsistent

e BSL uses DCOCLK (software clock), cannot force crystal

— Number of instructions varies

* Due to timing vulnerability

* Any mistakes are multiplied 34x (since 34 post-header bytes
per auth)

Timing attack problems

Timing info destroyed
(produces bad data)

T: too large ... Start
Stop interbyte g tee

Stop E Tinterbyte t0O small Start

Stop bit still low and/or Miss start bit
(causes NAK) (produces bad data)

Timing attack problems

If timing is bad, you will receive a NAK response

Since password is inherently wrong, you will receive a NAK
response

No good way to differentiate between the NAKs!

Timing attack game plan

e Test with same-model chip (with known BSL password) to
find ideal timing

* Use external crystal on GoodFET to eliminate attacker-side
clock problems

* Slowly decrease Tinterbyte Until correct password is no longer
ACKed

— Find the run with the lowest overall total time
— You have found ideal Tinterbyte

— Re-use on target chip

Timing attack results

;N

.

\»&
e I~ = .
ideal Tinterbyte

500 + [' e SR 20E pel25082

EEEEEEE

Total time vs decrease in Tinterbyte

Timing attack results

Looks good at macro level
Wildly inconsistent at micro level

Overall total times will vary by thousands of attacker clock
cycles

Tried modifying BSL to expose bit read time on a line

Tried just focusing on last byte: only need to get three
Tinterbyte correct
— last byte + checksum

Modified attack results

200

190

180

170

160

180

50 50 00 150 200 250 300
é 0 o + Q pan/zoom, x«262.601 y=1
T

Guessed byte vs overall time

Timing attack conclusions

Attack was a failure

Likely due to DCOCLK inconsistencies during the tare
routine, which produces victim chip’s timing for serial
communication (length of “sleep”s)

If this tare routine value is inconsistent, the timing used for
every serial bit will differ, multiplying errors

Doesn’t appear to average out in the short term

“Paparazzi” attack

* Firmware extraction technique
— Goodspeed told me about this
— Permits bypassing JTAG security fuse

— Most likely due to photoelectric effect

MSP430 JTAG security

* MSP430F1xx/2xx/4xx: physical fuse

— Once blown (“programmed”), it’s blown

 MSP430F5xx/6xx: electronic fuse mechanism

— Can be unprogrammed by erasing Ox17fc

— Not successful at attacking these

MSP430 1/2/4xx fuse

* Fuse check is performed by toggling TMS line twice with
TDI high

e Currentis measured from TDI across the fuse

JTAG State-Machine Reset JTAG Fuse

RunTostidle . g Se(TCLK i~ Checked

Figure 1-12. Fuse Check and TAP Controller Reset

Chip logic remembers the result

“Paparazzi” attack

* Decap the chip
— Ensure bonding wires remain intact
* Jet etching may be required
— <5100 outsourced to lab

* Run a tight JTAG loop on reset-
tap + fuse-check

* Every ~200 iterations attempt
authenticated action

— Read first address in BSL memory space

“Paparazzi” attack

Expose the die
and hit with

camera flash

o /
s
N\

+

gﬁ;*ﬁ‘.ﬂ 3

=
60

'|

(OIOIO.IOIOIOiOIOII

“Paparazzi” attack

When valid data returned, success!

Do not power the chip down, or flip reset line

— Requires GoodFET software modification
Be sure to power the chip externally during attack

Don’t expect chip to be in normal state

— lusually just read BSL password then reset

“Paparazzi” attack: Why?

* JTAG fuse check works by measuring current across fuse

— Photoelectric effect causes transistor to release electrons when
struck with photons

— Causes current to appear to pass across the fuse

— Alternative theory is UV erasing memory cell where JTAG state
stored (e.g. bunnie’s attack on PIC microcontroller), but digital
camera flash produces minimal UV and attack is instant

Paparazzi Demo

FINDINGS

MSP430 firmware reversing

e (Calling convention
— R12
— R14
— Remaining arguments pushed to stack

— Return: R12
e Occasionally R13 is also used, if 32-bit return

MSP430 firmware reversing

Only unique thing was “sparse index” switch statement construction

Used a common helper function that reads function return address off
the stack, then parses data structure after call to find out jump

destination
s5eg001:0000A7F4 mov.b &command_id_byte, R12
8eg001:0000A7F8 call fswitch_statement_ helper
8OGO00L : D000ATIIB ;| o e o e e e e e e e e e e
seg001:0000A7FC .short loc_AAdd ; default
seg001:0000A7FE .short 25
s8eg001:0000A800 .byte 48
seg001:0000A801 .short handle connection start
8eg001:0000A803 .byte 49
seg001:0000A804 .short handle_send identity
seg001:0000A806 .byte 50
seg001: 0000A807 .short handle send configuration
5eg001:0000A809 .byte 51
seg001: 0000A80A .short handle crypto key update
$eg001:0000A80C .byte 52
seg001:0000A80D .short handle base challenge_ response

$eg001: 0000AB0F .byte 53

IrDA

 Surprisingly large (~25%) amount of firmware dedicated to IrDA

* Bit-banged serial-ish with short pulse width
* Can be sniffed from test pad on board and decoded with custom Logic

plugin
* Export from Logic, post-process with python into pcap, and Wireshark
does the rest G

file Ednt Veew Co Capture Analyze Statistics Telephony JTools Internals Help

No |1 |s Lg;u | Protocol | Length|info

- e e Trov” AAc
ouFFF) 1

::::::

oo
.o
.o
.o
.o
-

40000

{Packets: 18_ {Profile: Def

Firmware reversing finds

1.How Supra crypto really works

2.Actually three authentication modes

3.Hardware backdoor!

4.Memory read/write command permits reading/
writing flash using hidden mode

Supra crypto architecture

All crypto keys used are derived from or encrypted with two keys (AES128)

Device Key
— Rarely used in the field, used to get high authentication level (i.e. for
“deprogramming” a device to use it in another syscode region)

syscode Key
— Root of trust for all normal operations (e.g. opening the key container)
— Shared by entire geographical region

Neither are ever accessible to the eKey app or readable via remote
commands

@ Syscode Key

* Provisioned during unknown process at local MLS office
— Device must be in deprogrammed mode

— They must have some authenticated channel to obtain the syscode key for
their region

A MAC key and an Encryption key are derived from syscode key, and
used to validate cookie integrity and decrypt other ephemeral keys

* Compromising this key permits attacker to generate fake
“authentication cookies”

— Can open any lock in geographical region without leaving a trace

@

Third authentication mode

Permits access to visitor log in EEPROM

— Useful if the lock has been unlocked before
Requires no authentication cookies for access

Visitor log contains the serial number/syscode of
connecting eKeys
— This solves one of our earlier problems, but still need PIN to use

©,

Brute Force

* PIN only 4 digits

* However device has PIN brute-force protection

— eKey will get "locked out" and cannot communicate for 10m

— Exhaustive PIN brute force would take about 1 week waiting for
lockouts

— However, lockout counter stored in EEPROM and can be erased
with physical access

©,

Hardware backdoor

* Deprogrammed authentication

— Android app only uses this method when device is deprogrammed

e Can actually be used when device is programmed if you
know the Device Key

— Highest access mode, permits overwriting keys

— Likely used by MLS office, they must have a secure channel to get
Device Keys for their devices

* Implementation contains hardware backdoor

Hardware backdoor

 P3.1 goes high

* Immediately test P3.2

* |f low, backdoor is in effect

—— o —————

seg001:0000D342
seg001:0000D346
5eg001:0000D34A
s8eg001:0000D34C
s5eg001:0000D34E
s8eg001:0000D350
seg001:0000D350
s8eg001:0000D350
50g001:0000D0350
seg001:0000D352
seg001:0000D352
seg001:0000D352
seg001:0000D354

p32_is high:
clr.w

§BI1T1, &P3OUT
#BIT2, &P3IN
p32 is high
#1, R13

finished testing backdoor

R13

finished testing backdoor:

mov.b
bic.b

R13, R12
§BIT1, &P3OUT

; CODE XREF: handle base challenge+lE’j

; CODE XREF: handle_base_challenge+22°j

® Hardware backdoor

 P3.1and P3.2 are connected
to each other (through a
resistor)

e Desolder the resistor and you
can bypass per-device
authentication

e Destroy the resistor with a
single drill hole in back of
closed iBox and you can open
it up with deprogrammed
auth

Flash write+erase attack

Way to extract Syscode Key without decapping?
Keys are in “Information Memory” which is erased by BSL mass-erase
Generally, must erase flash between writes

iBox has Memory Write command that permits writing to same

information memory segment where keys are stored

— Entire segment is copied to stack buffer, Flash segment is erased, modified,
and then written back

— Stack is in RAM... which is not erased by BSL mass-erase

Flash write+erase attack

First use hardware backdoor to “authenticate”

Initiate a Memory Write command to information page (at an
unused location)

Information page will be copied to stack buffer, modified, and
written back to flash

Quickly reset device and perform mass-erase of flash via BSL

Read RAM using BSL (using default password)

Flash write+erase attack

e Great success!

» Special GoodFet application that counts clock cycles

— Run application right before sending iBox Memory
Write command

— Send Memory Write command
— Application will reset chip and put into BSL mode
— Subsequently can mass-erase and read RAM

— Attack can only be performed once, but Syscode Key is
obtained

Demo

Conclusions/solutions

* Supra
— Discussed issues with them in June
— Very receptive, started working on fixes
— Starting to deploy solution in <60 days

* Other applications:
— Avoid storing cryptographic secrets in general purpose
microcontrollers flash memory

Greetz

 Hardware socket by Aaron Kobayashi

e Thanks to Nathan Keltner and Kevin Finisterre

* Thanks to Travis Goodspeed for prior work

Questions

ACCUVANT

